Copied to
clipboard

G = C6xC23:C4order 192 = 26·3

Direct product of C6 and C23:C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C6xC23:C4, C24:4C12, (C2xD4):5C12, (C6xD4):17C4, (C23xC6):2C4, (C22xC4):4C12, C23:1(C2xC12), (C22xC12):7C4, C24.11(C2xC6), (C22xD4).5C6, C22.10(C6xD4), C23.11(C3xD4), (C22xC6).157D4, C23.1(C22xC6), (C6xD4).282C22, (C22xC6).80C23, (C23xC6).10C22, C22.6(C22xC12), (C2xC4):1(C2xC12), (C2xC12):3(C2xC4), (D4xC2xC6).16C2, C22:C4:9(C2xC6), (C2xC22:C4):4C6, (C6xC22:C4):9C2, (C22xC6):2(C2xC4), (C2xD4).40(C2xC6), (C2xC6).405(C2xD4), C2.12(C6xC22:C4), C6.100(C2xC22:C4), C22.2(C3xC22:C4), (C3xC22:C4):45C22, (C2xC6).159(C22xC4), (C2xC6).135(C22:C4), SmallGroup(192,842)

Series: Derived Chief Lower central Upper central

C1C22 — C6xC23:C4
C1C2C22C23C22xC6C3xC22:C4C3xC23:C4 — C6xC23:C4
C1C2C22 — C6xC23:C4
C1C2xC6C23xC6 — C6xC23:C4

Generators and relations for C6xC23:C4
 G = < a,b,c,d,e | a6=b2=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >

Subgroups: 434 in 210 conjugacy classes, 82 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2xC4, C2xC4, D4, C23, C23, C23, C12, C2xC6, C2xC6, C2xC6, C22:C4, C22:C4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C2xC12, C2xC12, C3xD4, C22xC6, C22xC6, C22xC6, C23:C4, C2xC22:C4, C22xD4, C3xC22:C4, C3xC22:C4, C22xC12, C22xC12, C6xD4, C6xD4, C23xC6, C2xC23:C4, C3xC23:C4, C6xC22:C4, D4xC2xC6, C6xC23:C4
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C23, C12, C2xC6, C22:C4, C22xC4, C2xD4, C2xC12, C3xD4, C22xC6, C23:C4, C2xC22:C4, C3xC22:C4, C22xC12, C6xD4, C2xC23:C4, C3xC23:C4, C6xC22:C4, C6xC23:C4

Smallest permutation representation of C6xC23:C4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 33)(8 34)(9 35)(10 36)(11 31)(12 32)(13 30)(14 25)(15 26)(16 27)(17 28)(18 29)(37 48)(38 43)(39 44)(40 45)(41 46)(42 47)
(7 48)(8 43)(9 44)(10 45)(11 46)(12 47)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 48)(8 43)(9 44)(10 45)(11 46)(12 47)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 21 48 25)(8 22 43 26)(9 23 44 27)(10 24 45 28)(11 19 46 29)(12 20 47 30)(13 42)(14 37)(15 38)(16 39)(17 40)(18 41)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,33)(8,34)(9,35)(10,36)(11,31)(12,32)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,21,48,25)(8,22,43,26)(9,23,44,27)(10,24,45,28)(11,19,46,29)(12,20,47,30)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,33)(8,34)(9,35)(10,36)(11,31)(12,32)(13,30)(14,25)(15,26)(16,27)(17,28)(18,29)(37,48)(38,43)(39,44)(40,45)(41,46)(42,47), (7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,48)(8,43)(9,44)(10,45)(11,46)(12,47)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,21,48,25)(8,22,43,26)(9,23,44,27)(10,24,45,28)(11,19,46,29)(12,20,47,30)(13,42)(14,37)(15,38)(16,39)(17,40)(18,41) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,33),(8,34),(9,35),(10,36),(11,31),(12,32),(13,30),(14,25),(15,26),(16,27),(17,28),(18,29),(37,48),(38,43),(39,44),(40,45),(41,46),(42,47)], [(7,48),(8,43),(9,44),(10,45),(11,46),(12,47),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,48),(8,43),(9,44),(10,45),(11,46),(12,47),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,21,48,25),(8,22,43,26),(9,23,44,27),(10,24,45,28),(11,19,46,29),(12,20,47,30),(13,42),(14,37),(15,38),(16,39),(17,40),(18,41)]])

66 conjugacy classes

class 1 2A2B2C2D···2I2J2K3A3B4A···4J6A···6F6G···6R6S6T6U6V12A···12T
order12222···222334···46···66···6666612···12
size11112···244114···41···12···244444···4

66 irreducible representations

dim111111111111112244
type++++++
imageC1C2C2C2C3C4C4C4C6C6C6C12C12C12D4C3xD4C23:C4C3xC23:C4
kernelC6xC23:C4C3xC23:C4C6xC22:C4D4xC2xC6C2xC23:C4C22xC12C6xD4C23xC6C23:C4C2xC22:C4C22xD4C22xC4C2xD4C24C22xC6C23C6C2
# reps142122428424844824

Matrix representation of C6xC23:C4 in GL6(F13)

1000000
0100000
001000
000100
000010
000001
,
100000
0120000
0001200
0012000
0000012
0000120
,
1200000
0120000
001000
000100
0000120
0000012
,
100000
010000
0012000
0001200
0000120
0000012
,
0120000
100000
0000120
0000012
0012000
000100

G:=sub<GL(6,GF(13))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0] >;

C6xC23:C4 in GAP, Magma, Sage, TeX

C_6\times C_2^3\rtimes C_4
% in TeX

G:=Group("C6xC2^3:C4");
// GroupNames label

G:=SmallGroup(192,842);
// by ID

G=gap.SmallGroup(192,842);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,4204,3036]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<